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INTRODUCTICN

The RMS/MTTS instrumentation system located at MachGregor Range is » range

Mo o~ 2y g TS
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s e k. R -

measuring, multiple target tracking system. In order to obtain a vehicle
trajectory from this system, the range measurements from several receivers
are processed by least squares. Because the measured vehicle trajectories

of interest are often low altitude and because of the geometry of the re-

ill-conditioned. In addition, this measurement system is sub’ect to out-

them if necessary. The i11-conditioned least squares problem can then be

treated without being troubled by outliers.

crete measurement sequences. The preprocessing of the range measurement

iteration we minimize,

N
(k) (k) 2
jZ] wj (R(tj) - ; b{ B‘I(tj)) ’

ceiving stations, the resulting nonlinear least squares equations are often

liers, sometimes dense bursts of outliers. This combination of i1l1-condition-
ing and outliers is lethal and our attempts to robustify the nonlinear Teast
squares estimation process have failed. An alternative is to preprocess each

of the range measurement sequences, identifying the outliers, and replacing

Suppose we preprocess the measurement sequence, R(ti), i = 1,N, For typical
aircraft trajectories the measurement rate is 10/sec with a time of interest
of 40 - 120 sec so that N is often in the range 400 - 1200. The purpose of
the preprocessing may be to detect outliers, to precompute measurement variances

for future least squares processing, or to synchronize several different dis-

sequence, R(ti}, is done by fitting a cubic spline to the discrete measurements

using fteratively reweighted least squares (IRWLS). Specifically, at the klz-E

(1)




where Bi(') are the cubic 8-splines and bgk) are the spline coefficients to
be estimated. The weights, wgk) are computed from the Hampel y-function

using the spline fit from the (k-1)X jteration.

(k-1)
. R(t;) - Ib; B; (t,)
(k) 55"
Wikl a (2)
(k=1)
J R(t,) - 1Zbi B, (t,)
k-1
S
where
[ x |x|<a

a-san (x)a<|x|sb
P(x) = (3)
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sgk']) estimates the dispersion in the residual, R(tj) -1 bgk-])si(tj)' The
i

value of Sgk'l) can be computed either locally or globally from the residuals

at the (k-1)§£ iteration. The dispersion Sgk’]) is a MAD estimate obtained

from
)=t ) oy

If the set Tj is in some sense the set of points close to tj, the estimate
Sgk'1) is local. If the set TJ is the set, Tj = {t |m = 1,N} the estimate

is global. For the present application only the global estimate Sgk'I)- S(k'1)
will be used. If a very long data sequence, say about one hour, a local

estimate would probably be preferable to the global estimate.

CHOICE OF KNOTS

Let {Ti’ i = 1,M} be a set of knot times. These knot times are used to define
the cubic B-splines, Bi(tj)’ Of most importance in the choice of the knot times
is their spacing, which determines the ability of the cubic spline to fit the
data. However, for each additional knot time there is one additional spline co-
efficient to be estimated, thus increasing the computational load. Thus, we want
to have as few knots as possible and the rules for their choice simple and yet.be
able to adequately represent the data. With this simple philosophy for selecting
knots we will try to assign a fixed number of data points, NPTO, to each knot in-
terval., The first four knots are placed at the first data. The last knot inter-
val may have more than NPTO points but fewer than 2 « NPTO data points. If there

is a large time break in the data, a knot is placed at the beginning and end




of the time break. The interval between these two knots has zero data points
and the interval immedtately preceding the time hreak may have more than

NPTO points but fewer than 2 - NPTO points. If immediately after a time break

there is a second time break before NPTO points have been read, the few (less
than NPTO) points read between the two time breaks are discarded. If a time
break occurs while reading points for the first knot interval, the few (less
than NPTO) points are discarded and the first four knots repositioned at the
first data time after the time break. If a time break occurs during the last
interval, the portion of the last interval contiguous to the previous interval
is kept and the remainder of the points in the last interval are discarded.

If there are at least NPTO points kept, these points form the last interval.

If there are less than NPTO points kept, these points are appended to the pre-
vious interval so that the number of knot intervals is reduced by one. The

time difference between successive data points which is used to define a time
break is named FITBRK. FITBRK is dependent on the sampie rate. The time dif-
ference between successive data points used to define a time break in the first
and last knot intervals is FITBRK/S5. This smaller value is used in the first
and last interval because it is critical to obtain a good fit in these intervals.
The flow chart on the following pages more clearly defines the logic for select-
ing the knot times. The following define the variables in the flow chart:

NOTS = number of interior knots R(-) = array of range measurements

KR number of knot intervals MPTS(-)

array of point counts for
knot intervals

TT(:) = array of knot times

IBRK = 1ogical denoting the occurrence
NCOUN = total data point count of a time break
T(-) = array of data times STA = data start time

ETA = data end time
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NP =1
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[ IBRK = THEN_|ETA = TT(NOTS + 3;
. NCOUN = NCOUN - NP
i - ELSE

TT(NOTS + 3) = TL + EPS
NPTS (NOTS - 1) = NPTS(NOTS - 1)+ NP

ETA o= TL
¢ KR = NOTS - 1 y
i INDX = NCOUN - NPTS(KR) -

TL = T(INDX + 1)

DO FOR K = 2, NPTS(KR)

IF IF IF

INDX + K) > .2+FITBR NOTS = NOTS-1

ELSE "ELSE

) v .

f NPTS(KR) = K-1 KR = KR - 1 '
J 7 NPTS(KR) = MOTS(KR)+K1] |

- . .
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TT(NOTS + 3) = TL + EPS
: ETA = TL_
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!

— cm——
— e— e — e — . mwve e amw o | o owmn Sy o cmms —— — - —
— - —m— e cmeme e




THE LEAST SQUARES NORMAL EQUATIONS

At the k-t-n iteration of the fitting procedure the weighted sum of squares

N
(k (k)
jZ] wj ) (R(tj) - ; bi Bi(tj))z (5)

is minimized. The least squares normal equations are obtained by differentiating

(5) with respect to bgk). The least squares normal equations are
§ k) g(e,) 8T(t,) b%)a '§ k) gt a(e,) (6)

where BT(tj) is the vector of cubic B-splines
T
B (tj) = [81(tj) Bz(tj) - == Bn(tj)] (7)

Due to the nature of the B-splines the positive definite matrix on the left of
(6) is banded with three bands above and below the main diagonal. To conserve
storage the four distinct diagonals of this matrix are stored as columns of a
vertical matrix, The dimension of the vector Q(k) is NOTS + 2 where NOTS is
the number of interior knots. The banded least squared normal equations are
solved by a banded Cholesky decomposition algorithm. The sums of hHoth sides of
(6 ) are performed sequentially so that all of the ranges and weights are not
needed in core simultaneously. The IRWLS can be continued for a fixed number

of iterations or until the fit has converged.

INITIAL WEIGHTS

In many situations the IRWLS procedure works successfully when all of the

initial weights are set to one, i.e., the iteration is started with an ordinary

e d




unweiohted least squares solution. We have found that the use of the unweicht-
ed least squares start will usually result in convergence of the IRWLS cubic
spline to a good fit with outliers correctly identified, but that many fewer
iterations are required if a robust choice of initial weights is used. 'hen
outliers are present in either the first or last intervals, the choice of

initial weights in these intervals is most important.

The initial weights for the robust cubic spline fit are chosen on a localized
basis. Let R(ti), i = 1, NPTS(K) be the range measurements in the KEE knot
interval. To determine the weights w§°), i =1, NPTS(K) in the kEh interval a
linear curve is robustly fitted to the measurements in the interval. Several
methods for robustly fitting the linear curve have been tried, including the
nested median method of Siegel [ 1], the method of Theil [ 2], a modified Theil
method, and an M-estimate using a Hampel ¢-function. Most methods performed
about equally well on the data sequences tested. The results of some of these
tests are given in Appendix A. Because of its simplicity, the modified method
of Theil was selected for routine application. This method is described in the

following paragraph.

Let § be the median of the observations in the KEE knot interval.

R = median {R(t,)}
i =1, NPTS (K) (8)

Let t be the time corresponding to R. The median R can be represented as the

average of two observations,

R = (Rt ) + R(t, 1)/2 (9)

where m; = m, if NPTS(K) is odd. Define the set of slopes {Si}

. N o s . . . P a Ao e, 2m




. N,

T — -

- R(t,) - R i = 1, NPTS(K) (10)

S

Let s be the median of the slopes,

s = median {31}

i =1, NPTS(K) (1)
i Am,, M

Let Fi be the residual,
Foo= R(ty) - §(t; = ), 1 =1, NPTS(K) (12)
Let r be the median of these residuals,

r = median {Fi}
i =1, NPTS(K) (13)

Now compute the residuals,
ry =y =, 121, NPTS(K) (14)
The initial weights, w$°l are computed from these residuals using a Hampel

y=function.

/‘e-\
m|1
=N

k ) i =1, NPTS(K) |
)

Where sk is the robust dispersion parameter,

wﬁﬂ) = (15)

-

[

Sy * me?ian {|F1|}/-5745 (16)

Since the main concern in setting the initial weights is to protect the cubic
spline fit from the gross outliers, the break points of the Hampel w-function

are setata=2,hs= 3, c= 4.




SOME_EXAMPLES

Several hundred data passes have been run with the fitting procedure described.
Since there is an average of maybe five receivers on each data pass, the
robust preprocessing method described has been used on more than one thousand
measurement sequences. The method has performed successfully on all of

these sequences. Most of these sequences are rather uneventful, having only

a few isolated outliers. There have been some sequences which have some

rather dense bursts of outliers. These sequences best illustrate the ability
of the method described to detect outliers. Fig 1 presents a range measurement
sequence and Fig 2 the robust cubic spline fit to this sequence. Mote that the
outliers in Fig 1, which have been darkened, occur in many sizes. The

outliers at the top of the graph were added by hand since they all occurred

far off scale at the top. The sequence of Fig 1 has about 10% outliers.

A1l outliers have been successfully detected and removed by the robust spline
fit. The measurements in Fig 1 have two dense burst of outliers, one in the
interval (62356.6, 62359.5) and another in the interval (62367.2, 62375.4).

The measurement sequence in Fig 3 has outlier bursts in the intervals (62358.4,
62362.6), (62374.4, 62376.4), and (62379.7, 62382.4). The sequence in Fig 3
has about 15% outliers. The sequence in Fig 5 has bursts of outliers

during the intervals (63117.8, 63122.6) and (63128.2, 63131.5). Any points
away from the main curve should be considered outliers in Figs 1, 3, and 5.
Note also in Figs 1, 3, and 5 that there are time breaks in the measurement
sequences, another important consideration in preprocessing. The cubic

spiine fit to the sequence of Fig 1 is given in Fig 2. The cubic spline

fit to the sequence of Fig 3 is given in Fig 4 and the cubic spline fit

10
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to the measurement sequence in Fig 5 is given in Fig 6. The knot intervals
in Figs 2, 4, 6 are designed to contain twenty data points. Note that some
of the time breaks have been filled with fitted data points. The filling
of the time breaks is controlled by the length of the time breaks in
relation to the sample rate and the proportion of outliers found in a

knot interval. The robust cubic spline preprocessor has deleted all
outliers from the measurement sequence, generated measurements during the
time breaks as desired, and synchronized different measurement sequences

if desired. In addition the measurement variances are available for

further processing. The IRWLS cubic spline fit converged in 3 - 4
iterations for the examples displayed. This fairly rapid convergence is
dependent on a robust method for choosing good initial weights. Surprisingly,
the IRWLS cubic spline iteration for these examples also converges using an
unweighted 1least squares start, but at the expense of more iterations.

For the measurement sequences displayed here the IRWLS cubic spline fit
converged in 7 - 8 iterations using an unweighted least squares start.

Thus, at least in these examples, a good choice of the initial weights
resuits only in a significant improvement in computing efficiency and not in
an improvement of fit. Besides a good selection of initial weights, another
important choice is the number of data points per knot interval, NPTO.

NPTO must be large enough so that is 1ikely that only a fraction, say less
than one fourth of the data points in any interval will be outliers. On

the other hand, if NPTO is too large, the robust linear curve fit may not

be a good enough representation of the variation of the data in the interval,

n
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APPENDIX

This appendix describes several methods of choosing the initial weights

for the robust cubic spline preprocessing and compares the results of using
these methods on several data sets. Each of these methods robustly fits a
1inear curve in each of the knot intervals and then computes the initial

weights from the curve fit residuals using a Hampel y-function. Let

R(ti), ty = 1, NPTS(k) be the range measurements in the kyl knot interval.

Theil Method

Define the slopes 515

R(t,) - R(t;)
s, . ) -RO)

13
ty -t

Let s be the median of these slopes,

S = m??ian {sij}
J>i

Define the residuals ;i’
Ff - R(tf) - ; t1

Let r be the median of the residuals, Fi

r = median {Ff}
{121 ,NPTS(k)

Then the residuals ry = 51 - I are used to compute the initial weights with a

Hampel y-function.
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Nested Medians

Nested or repeated medians is a robust regression method recently described
by Siegel [1]. Siegel shows that this method has the highest breakdown
method of any known method. This method is particularly easy to apply for
a linear fit. It is similar to the Theil method and modified Theil

method already described.
Define the slopes sij'

R(t,) - R(t,)

Sij ® L in (A-1)
Define 51 by
s, = median {S::} -

T Sa,mpts(k) (4-2)

i

and further let s be defined by

s = median {E,} (A-3)
=1 ,NPTS(K)

Similarly, let aij be the intercepts

R(ty)eg - R(t))t,

%45 " T = (A-4)
Define 51 as
3, = median {a,,} -
tT 5 Nersqy M (A-5)
Jmi

19
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and further define a by

a = median {51} (A-6)
i=1 ,NPTS(k)

Let r be the residuals

ry = R(t,) - a-st,, isl, NPTS(k) (A-7)

i i*

The weights ugo) are computed from these residuals using a Hampel

y=-function.

The following data sets were taken from the knot intervals of the data
sequences used previously to illustrate the application of the robust

range measurement preprocessing. The first data set, §hown in Fig Al is
taken from the measurement sequence given in Fig 1. The measurements in this
set are from the time interval 62356.6 - 62359.5. The second data set,

shown in Fig A2 is taken from the measurement sequence in Fig 5. The
measurements in this set are from the time interval 63128.2 - 63131.6.

In each of the data sets the weights are calculated from the residuals r by

vlryg)

—_— (a-8)

W0 .
(ri/s)

where ¥(+) is a Hampel y-function with breakpoints 2., 3., 4. In both of
those data sets there are eight outliers in the sample of twenty. Each of
the robust 1incar methods seem to have no difficulty in identifying the

outliers in these data sets.
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. TIME RANGE MODIFIED NESTED THEIL MODIFIED NESTED THETL
| THEIL RES MEDIAN RES RES THEIL WEIGHT  MEDIAN WEIGHT WELGHT
.6 56083 -8 0 5 1 1 1
N 56004 -1 -5 0 1 1 . 1
.8 55938 -2 2 7 1 1 1
.9 57336 14N 1473 1478 0 ) 0 1
1.0 97546 41757 41757 41761 0 0 i}
10 74022 18308 18307 18311 0 0 0
1.2 55190 -447 -451 -447 0 0 0
1.4 55478 -8 -15 -12 1 1 !
1.5 55400 -1 -20 -16 K 1 1 ]
1.6 55321 -14 -25 -22 1 1 1 1
. 1.7 55249 -1 -23 -2 1 1 1 - u
” 1.8 55170 14 -29 -26 1 1 1 ~
. 1.9 - 551 2 -14 -12 1 ' 1 1
! 2.0 54009  -1024 -1042 -1040 0 0 0
{ 2.1 99357 44399 44379 44380 0 0 0 ]
3.1 172631 118428 118389 118389 ) 0 0 0
3.2 59980 5853 5812 5811 0 0 0
3.3 54094 42 0 -1 1 1 1 ]
3.4 54022 46 1 0 1 1 1 |
3.5 53950 a9 3 1 1 1 1 k
|
FIGURE Al .
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